

GEOSYNTHETICS IN THE ROAD INFRASTRUCTURE 31.January 2006 - Praha, 1.February 2006 - Brno

Using intelligent geosynthetics in subsoil reinforcement

Philippe Delmas Jürgen Gruber

International Geosynthetics Society, Česká republika – www.igs.cz

A REMAINING PROBLEM Structures over Cavities and Soil Subsidence

Conventional Problem Solving

1. Use of conventional materials (concrete, steel) This might results in extrem high cost!!

Use of <u>geosynthetic</u> reinforcement
To cover 99% of the risk overdesign is most probably.

Unpredictable soil formation can still lead to severe damage of the project !

IN THE BEGINNING..... Reinforcement of Embankment over Soil Subsidence (Cavity)

Geometry of R.A.F.A.E.L. railway tests

Rafael project for French railways, motorways in 1997

RAFAEL Project Design of the reinforcement over soil subsidence

Warning system needed (on development of the cavity)

The Answer: GEODETECT – Reinforcement and Monitoring

Detection of incidents in soil (strain or failure)

Any events in the underground resulting in strain of Geodetect can be detected.

Strain measurement

Movements of earthwork structures and development of soil formations can be measured.

Alarm in real time

Any strain in Geodetect can lead to an immediate warning signal

Location of incidents

The area of the event can be localized.

Reinforcement

Earthwork structures are reinforced according to the required design, taking into account possible economies due to the attached monitoring.

Principle of strain measurement

Modification of the fibre (eg stress): The reflected signal is modified

Because of the specific property of the Bragg Gratings, the elongation of the fibre may be read with the displacement of the characteristic wavelength.

GEODETECT The System

GEODETECT – Principle of Alarm System

GEODETECT – Principle of Alarm System

Case History 1 Railway Project Arbois, France 2004

Warning system to monitor soil subsidence (sinkholes) for French Railways (SNCF)

Monitoring area: length of track 50m width 5.3m

Case History 1 Railway Project Arbois, France 2004

Geodetect information:

- Tensile strength of geotextile 300kN/m
- 5 fibre optical cables at 0.85m spacing along width
- Sensor distance 0.85m
- Design with min. 1 sensor to detect hole diameter 1.2m
- Total of 300 sensors used

Design criteria:

Warning criteria for surface settlement: 6mm Slowdown criteria for surface settlement: 9mm Intervention criteria for surface settlement: 21mm (21mm corresponds to 2% strain in Geosynthetics)

Case History 1 Railway Project Arbois, France 2004

- Night installation (11:00pm-5:00am) to prevent interruption of train service
- Ballast removed and soil excavated to 50cm
- Placement of pre-fabricated Geodetect roll

Cross section of structure indicating location of Geodetect

Geodetect installation

Strain measurements with Geodetect

Strains recorded in Geodetect

GEODETECT Conclusion

<< Innovative Reinforcement and Monitoring System for Safe and Cost Effective Maintenance of Earthwork Constructions >>

- Measurement of strain of geosynthetic reinforcement in soil
- Analysis and alarm System
- High durability and long time resistance
- High accuracy: Strains of 0,003% can be registered
- Easy monitoring of large areas
- Simple handling and installation
- Industrial production