MISTAKES AND DEFECTS IN USING GEOSYNTHETICS IN CONSTRUCTION INDUSTRY

9. April 2008 – Prague 10. April 2008 – Brno

GS Reinforced Structures In Alpine Regions - case studies

A.Nancey – TenCate Geosynthetics Europe

International Geosynthetics Society - Česká republika

GS Structures in Alpine Regions Introduction

- Criterias for the selection of construction method
 - Safety aspects
 - Availability of material
 - Duration of construction
 - Ecological aspects
 - Attractive optical appearance
 - Accessibility
 - Construction costs
 - Etc.

GS Structures in Alpine Regions Comparison of Systems– TU Graz - Costs € / m² frontview

GS Structures in Alpine Regions

Case Study - Eiblschrofen

- 2 Protectiondams:
 - 25m height
 - Basis 80m
- 180.000m³
- construction < 2 month
- WLV Tirol, TU Wien, ILF
- System polyslope S
 - Distance of layers 50 cm
 - 100 kN/m tensile strength
 - Anchor length 6,0m

GS Structures in Alpine Regions Case Study - Eiblschrofen

GS Structures in Alpine Regions Case Study - Eiblschrofen

GS Structures in Alpine Regions Case Study - Eiblschrofen

GS Structures in Alpine Regions Case Study – Avalanche Protection Lanersbach

- Height 10 m, 60°
- Statically independent Concrete Wall
- System polyslope S
 - Layer distance 50 cm
 - Tensile strenght 50 kN/m

GS Structures in Alpine Regions Case Study – Avalanche Protection Lanersbach

GS Structures in Alpine Regions Case Study – Avalanche Protection Lanersbach

GS Structures in Alpine Regions Case Study – Widening of skiing tracks

GS Structures in Alpine Regions Case Study – Reconstruction of Mountain roads

GS Structures in Alpine Regions Case Study Rodlau – Reconstruction of B115

GS Structures in Alpine Regions

Case Study Rodlau – Option 1

GS Structures in Alpine Regions Case Study Rodlau – Option 2

GS Structures in Alpine Regions Case Study Rodlau – Design and System

- Design according to EBGEO
 - Internal Stability: Pull Out / Rupture
- External Stability:
 - Austrian Standard ON B 4433: Slope failure / ON B 4432: Base failure / ON B 4434: permissible earth pressure on facing

GS Structures in Alpine Regions

Case Study Rodlau – Design and System

GS Structures in Alpine Regions Case Study Rodlau – Site Setup and Chronic

GS Structures in Alpine Regions Case Study Rodlau – Deformation Measurement: GEODETECT

GS Structures in Alpine Regions Case Study Rodlau – One Year Later

Stability Failure of An MSE During A Flood and It's Reconstruction Location

Stability failure of MSE Design and Construction

Stability failure of MSE Flood Event and Failure

Stability failure of MSE Flood Event and Failure

Stability failure of MSE Flood Event and Failure

Stability failure of MSE Reconstruction

Stability failure of MSE Reconstruction

Conclusion (1)

- Geosynthetic reinforced walls and slopes are now established as alternative against classical construction methods in alpine regions due to several advantages
- Different Systems and products are now available on the market and perform very well
- Advantage in hard accessible areas due to the use of light construction devices
- Cost savings up to 40% compared to classical construction methods
- Attractive optical appearance due to green solutions

Conclusion (2)

- In alpine regions specific boundary conditions of construction design have to be taken into account
- Safety behind civil structures depends on design assumptions which are not more than technically and economically selected parameters out of statistics with a certain remaining risk.
- The change in European climates has shown, that this borders have to be adapted to the new conditions.
- Never the less the construction method of MSE has proven that civil structures under extraordinary conditions, as to find in mountainous regions, expand the possibilities of carrying out infrastructure and building structures in an economical and technical way

Thank you