Testing the limits

Jochen Müller-Rochholz University of Applied Sciences Münster TBU, Greven

avoid material failure by testing

Who is responsible

Prüfingenieurbüro Windels/Timm/Morgan in Gerling Ing.-Letter 1/00

Example of a desaster(design failure)

Conceptualización del desarrollo ocurrido en el proyecto Windgate de Bairoa Caguas

Example of a desaster

Conceptualización del desarrollo ocurrido en el proyecto Windgate de Bairoa Caguas

-2-

Example of a desaster

Conceptualización del desarrollo ocurrido en el proyecto Windgate de Bairoa Caguas

Luego comenzaron a construir el muro con bloques individuales agarrados a una maya de plástico, a vuelta redonda del cerro que conceptualmente se vería como sigue.

-3-

Conceptualización del desarrollo ocurrido en el proyecto Windgate de Bairoa Caguas

-6-Al final tenian una meseta para construir los edificios del proyecto y así lo hicieron.

Concrete is brittle and sensitive to flexion, splitting tensile stress

Brittle failure of concrete

Very optimistic: Silicon against broken concrete

Announcing fatal failure concrete blocks initiate the collaps

۲

It is not failure of the geosynthetic

Final fatal failure

not of the geosynthetic!

Exceeding deformation limits

THE CIVIL ENGINEER IN SOUTH AFRICA DIE SIVIELE INGENIEUR IN SUID-AFRIKA

Registered at the Post Office as a newspaper. By die Poskantoor as 'n nuusblad geregistreer R9 (incl)

Source: K.Legge

Erosion along tunnel

۲

۲

Source: K.Legge

۲

Source: K.Legge

Design of Reinforcement

 $\mathsf{F}_{\mathsf{d}} = \mathsf{F}_{\mathsf{k}}/\mathsf{A}_{1} \bullet \mathsf{A}_{2} \bullet \mathsf{A}_{3} \bullet \mathsf{A}_{4} \bullet \mathsf{A}_{5} \bullet \mathsf{\gamma}$

۲

Design Force of GSY Fd Fk Characteristic strength of GSY Reduction factor for longterm (creep rupture, creep) A_1 Reduction factor for damage during installation A_2 Reduction factor for connections, seams, joints A_3 Reduction factor for environmental exposition A_{A} as weather, chemistry A₅ Reduction factor for cyclic loading Partial factor of safety (1.1...1.4) V

Characteristic strength F_k

Characteristic strength F_k

۲

$F_{k} = F_{5\%} = mean-1,645$ Stddev

High Strength Geosynthetics

•

A₁ –longterm creep

۲

EN ISO 13433 1000h creep as index-test, mostly 10 000 h requested

A₁ – isochronous stress-strain curve

•

A₁ –longterm creep rupture

۲

EN ISO 13433 one value in the area of 10 000 h requested

A₁ –longterm creep rupture

STATE I 1 - 1

۲

EN ISO 13433

one value in the area

of 10 000 h requested

Earthfall B180

Event occurred larger than estimated

۲

A_3 – connections, seams, joints

A_3 – connections, seams, joints

Environment A₄ Chemical resistance

•

Cyclic, dynamic loading

 \bullet

Fatigue behaviour of metallic materials

Wöhler graph and begin of damage line

 \bullet

۲

۲

•

Spider web graph

۲

common for fibre reinforced plastics (FRP)

Mean Strain, %

Kensche et. al 1996

•

$\Delta z \leq 0,3 \text{ mm}$

Cause of dynamic loads	dynamic load/ Static load	Ratio min F/ maxF
Traffic under ideal conditions	15 %	0,87
Unevenness of wheels	30 bis 50 %	0,66 bis 0,77
Shock loads	200 bis 300 %	0,33 bis 0,50

Frequency

۲

- single wheel 180 Hz
- wheelcouples ca. 8 bis 12 Hz
- Frequencies > 65 Hz not measured in soil
- maximum of deformation in soil < 20 Hz

>> f = 10 Hz

Loading parameters

 \bullet

parameter	value
Number of load cycles N	N = 10 ⁷
frequency f	f ≤ 10 Hz
dynamic ratio R	R ≤ 0,66

۲

•

۲

۲

 \bullet

۲

Creep rupture curve to determine loads

The maximum sustainable static load for the testduration was selected as upper load

Cyclic testing

۲

Load cell

Capstan clamps

Servo-hydraulic actuator

 \bullet

Specimen in clamp

 \bullet

۲

۲

Strain measurement, clamping

Clip on strain gages

HBM DD1 max s: ± 2,5 mm ε ≤ 10 %

 \bullet

 \bullet

INSTRON max s: ± 5 mm ε ≤ 20 %

Load strain hysteresis of GG1-PET during 10E7 cycles

Low creep, very low change in stiffness

Load strain hysteresis GG4-PP during 10E7 cycles

۲

۲

Remarkable creep

۲

low change in stiffness

Load strain hysteresis of GG5-PE during 10E7 cycles

High initial creep, change in stiffness

 \bullet

Load strain curve before and after 10E7 cycles

Load strain curve of GG5-PE before and after cyclic loads

Low creep, very low change in stiffness

Tensile tests after 10E7 cycles to determine A₅

Admissible load in % F_k

Look to strain at admissible Force

Design of Reinforcement $F_d = F_k/A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5 \cdot \gamma$

۲

If you have tested all values properly, you can exclude material failure and you are able to design properly Repair of Mudslide in Gondo Simplon Pass – Switzerland

Desaster 10. Oct. 2000: 10 houses washed out 13 casualties

Felix P. Jaecklin Dr. Sc. Tech. ETH, Dipl. Ing. ETH

High Risks for Rockfall

Properly tested values,

Good engineered design

safe structures with geosynthetics

=